
Additional File 1: Single Edge Simulations for Evaluating
the NEO software

Jason E. Aten1,2, Tova F. Fuller1, Aldons J. Lusis1,3, Steve Horvath∗1,4

1 Human Genetics, David Geffen School of Medicine University of California, Los Angeles, CA 90095, USA 2 Biomathematics,

UCLA 3 Microbiology, Immunology and Molecular Genetics, UCLA 4 Biostatistics, School of Public Health, UCLA

Email: Jason E. Aten - jaten@ucla.edu; Tova Fuller - suprtova@ucla.edu; Aldons J. Lusis - jlusis@mednet.ucla.edu; Steve Horvath∗-
shorvath@mednet.ucla.edu;

∗Corresponding author

Abstract

In this Additional File, we describe a simple simulation model for studying the effect of genetic markers and a

hidden confounding variable C on two observed traits A and B. The model uses the correlation cor(A,B)

between traits A and B as input parameter. The observed correlation cor(A,B) results from two sources: the

direct causal influence of B on A and a shared confounding variable C.

Background

We briefly review our definitions of the edge orienting scores before describing our simulation results. To

summarize the genetic evidence in favor of a given edge orientation A → B, we propose the use of edge

orienting scores. The higher the value of an edge orienting score for orientation A → B, the stronger the
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genetic evidence favors this causal model. We define the single-marker LEO.NB score as follows:

LEO.NB.SingleMarker(A → B|M) = log10




P (model 1: M → A → B)

max




P (model 2: M → B → A),
P (model 3: A ← M → B),
P (model 4: M → A ← B),
P (model 5: M → B ← A)







. (1)

A positive LEO.NB(A → B) score indicates that the p-value in favor of model A → B is higher than that

of any of the competing models. A negative LEO.NB score indicates that the A → B model is inferior to at

least one alternative model. We suggest to use a LEO.NB.SingleMarker threshold of 1 which implies that

the causal model in the numerator has a 10 = 101 fold higher p-value than the next best model in the

denominator.

Multi-marker LEO.NB score

It is straightforward to generalize the single marker LEO.NB score (Eq. 1) to a set of genetic markers

MA = {M (1)
A ,M

(2)
A , . . .}:

LEO.NB.CPA(A → B|MA) = log10




P (model 1: MA → A → B)

max




P (model 2: MA → B → A),
P (model 3: A ← MA → B),
P (model 4: MA → A ← B),
P (model 5: MA → B ← A)







. (2)

If an additional genetic marker set MB = {M (1)
B , M

(2)
B , . . .M

(KB)
B } associated with trait B is available, it

allows for the definition of a likelihood-based orthogonal causal anchor (OCA) score which assesses whether

the model MA → A → B ← MB has a higher p-value than the alternative models. Specifically, we define

LEO.NB.OCA(A → B|MA, MB) = log10




P (model 1: MA → A → B ← MB)

max




P (model 2: MA → A ← B ← MB),
P (model 3: B ← MA → A; A ← MB → B),
P (model 4: MA → A ← C → B ← MB)







.

(3)
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Single edge simulation model parameterized by heritability

Here we describe a simple simulation model for studying the effect of genetic markers and a hidden

confounding variable C on two observed traits A and B. The model, which is depicted in Figure 1(a), uses

the correlation cor(A,B) between traits A and B as input parameter. The observed correlation cor(A,B)

results from two sources: the direct causal influence of B on A (determined by the path coefficient ω) and

a shared confounding variable C (determined by the path coefficients γ). We assume that trait B is

determined by genetic markers M
(j)
B , the confounder C and measurement noise εB . Trait A is determined

by genetic markers M
(i)
A , the confounder C and, trait B and measurement noise εA:

A =
∑

i

αiM
(i)
A + γC + ωB + εA

B =
∑

j

βjM
(j)
B + γC + εB

C ∼ N(0, 1)

εA ∼ N(0, σ2
εA

)

εB ∼ N(0, σ2
εB

).

We assume that the variances of all traits and all genetic markers are equal to 1,

i.e. V ar(A) = V ar(B) = V ar(C) = V ar(M (i)
A ) = V ar(M (j)

B ) = 1. To determine the effect of the genetic

markers on traits A and B, we use the heritability as parameter since it is intuitive to geneticists. The

genetic heritability measures the proportion of trait variation that is due to underlying genetic variation.

For traits A and B, we define the restricted heritabilities h′A of h′B , respectively, as follows

h′A =
V ar(

∑
i αiM

(i)
A )

V ar(A)
(4)

h′B =
V ar(

∑
j βjM

(j)
B )

V ar(B)
. (5)

Then one can easily show that h′A =
∑

α2
i , h′B =

∑
β2

i , and that 0 ≤ h′A, h′B < 1. As an aside, we mention

that the restricted heritability of B equals the unrestricted heritability. By contrast, the restricted

heritability of A is smaller than the unrestricted heritability, since it does not take account of the genetic

markers M
(j)
B that are acting through B.

We also assume that the markers influencing A and the markers influencing B are independent conditional

upon A and B. Under these assumptions, the variances and covariances of the standardized variables A, B,
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and C are as follows:

Var(A) = h′A + γ2 + ω2 + 2γ2ω + σ2
εA

= 1

Var(B) = h′B + γ2 + σ2
εB

= 1

Cov(A,B) = γ2 + ω

Cov(A, C) = γ + ωγ

Cov(B,C) = γ

Note that the correlation between A and B is given by ρAB = Cor(A,B) = Cov(A,B) = ω + γ2, i.e. the

correlation ρAB is the sum of a causal part ω and a confounded part γ2. Therefore, we define the

proportion of the causal signal θcausal in correlation ρAB as follows:

θcausal = ω/(ω + γ2). (6)

Our simulations use the following input parameters: ρAB , θcausal, h′A, h′B , the number of genetic markers

KA and KB , and the number of observations N . The other parameters can be computed from these input

parameters, e.g.

ω = ρAB · θcausal

σ2
εA

= 1− 2ωγ2 − γ2 − ω2 − h′A

σ2
εB

= 1− γ2 − h′B .

More details on the simulation model are provided in an R software tutorial on our webpage:

www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/NEO.

Single edge simulation model parameterized with the heritability

In the following, we describe several simulation studies that use the single edge simulation model depicted

in Figure 1(a). A detailed description of the single edge simulation model can be found in the Methods

section and in an online R software tutorial. Briefly, we simulated two traits, A and B, anchored to genetic

marker sets MA and MB , respectively. The correlation cor(A,B) results from a causal influence of B on A

and from a hidden confounder C. We denote by θcausal the proportion of true causal signal in the

correlation cor(A,B) = ρA,B . The restricted heritability h′A is defined as proportion of variance of A due

to variation in the genetic marker set MA. Analogously, we define the restricted heritability h′B of trait B.
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Choosing thresholds for the LEO.NB scores

Here we use simulation studies to study the tradeoff between false positive rates and power for the

multi-marker LEO.NB scores.

We recommend that the user choose a threshold of 0.3 for the LEO.NB.OCA score and a threshold of 0.8

for the LEO.NB.CPA score. Thresholds of 0.3 and 0.8 imply that the causal model (in the numerator of

the LEO.NB score) have a 2 = 100.3 and 6.3 = 100.3 fold higher p-value, respectively, than the next best

model in the denominator.

The thresholds leads to different false positive rates and powers depending on the underlying causal model.

To illustrate this point, we report the results of different simulation studies in Table 1. We used the single

edge simulation model (Figure 1a) to evaluate the LEO.NB.OCA score (Eq. 3) and the LEO.NB.CPA score

(Eq. 2) with respect to retrieving the causal orientation A ← B. We simulated causal anchors M
(i)
A and

M
(j)
B for traits A and B, respectively. The restricted heritabilities (Eq. 4) of both traits were set to

h′A = h′B = 0.4. We kept the correlation fixed (cor(A,B) = ρA,B = 0.3) but varied the proportion of true

causal signal, θcausal (Eq. 6). When the causal signal, θcausal, is 0 the correlation between A and B stems

from the unobserved confounder C. We simulated N = 200 observations and 100 background noise SNPs

that were unrelated to the traits.

In Table 1, we report the results of four different causal models for the edge B → A. Simulation models

‘1a.1b.0’, ‘1a.1b.50’, and ‘1a.1b.100’ involved one signal SNP into A, one signal SNP into B and varying the

proportion of causal signal with θcausal set to 0, 0.5, and 1.0, respectively. Simulation model

‘1a.1b.100.4an.4bn’ also had a causal signal of θcausal = 1.00, but it involved four neighboring noise SNPs

into A and four into B. The correlations between the neighboring noise SNPs and the primary signal SNP

were randomly sampled from [0.4, 0.7]. Thus, model 1a.1b.100.4an.4bn allows one to study how noise SNPs

that are in high linkage disequilibrium with signal SNPs affect the computation of edge orienting scores.

For each simulation model, we simulated 300 replicate data sets and report the average power and false

positive rate in Table 1. The null model 1a.1b.0 allows us to estimate the false positive rate of the LEO.NB

scores. At a threshold of 0.3, the LEO.NB.OCA score and the LEO.NB.CPA score have a false positive

rate of 0.0041 and 0.027, respectively. Thus, the CPA score is less conservative than the OCA score, which

is why we recommend a higher threshold of 0.8 for the CPA score.

The single signal marker results in Table 1 show that when the false positive rate is kept at or below 5%,

the LEO.NB.OCA score has high power to retrieve the causal signal. Moreover, at the recommended

threshold of 0.3, the LEO.NB.OCA score maintains a false positive rate below 1% while simultaneously

5



obtaining statistical power at or above 90%.

For the model 1a.1b.0, we find empirically that a 5% false positive rate corresponds to a threshold of −1.61

for LEO.NB.OCA and −0.2 for LEO.NB.CPA. Since the LEO.NB threshold of 0.3 is less conservative for

the CPA score than for the OCA score, it is not surprising that for the semi-causal model 1a.1b.50 the

power of the CPA score (0.38) is slightly higher than that of the OCA score (0.29). However, under the

fully causal model 1a.1b.100, the power of the CPA score (0.83) is slightly lower than that of the OCA

score (0.90).

To compare the LEO.NB.CPA and the LEO.NB.OCA scores at the same false positive rate, a

LEO.NB.CPA threshold of 1.552 would be needed to obtain the false positive rate of 0.0041 (± 0.00078

SE). At this threshold, the LEO.NB.CPA score would yield only 48% (± 2.3% SE) power for the fully

causal model (1a.1b.100causal) while the corresponding power of the OCA score was 0.94. These results

show that the LEO.NB.OCA score can be far superior to the LEO.NB.CPA score.

Single edge model for comparing LEO.NB.CPA with LEO.NB.OCA

Here we use the single edge simulation model (Figure 1a) to compare the power of the LEO.NB.OCA score

(Eq. 3) with that of the LEO.NB.CPA score (Eq. 2) with respect to retrieving the causal orientation

A ← B. We simulated causal anchors M
(1)
A and M

(1)
B for traits A and B, respectively. We kept the

correlation fixed(cor(A,B) = ρA,B = 0.4), but varied the proportion of true causal signal θcausal (Eq. 6).

We simulated N = 200 observations. Figures 1 (b) and (c) correspond to models with restricted

heritabilities h′A = h′B = 0.2 and h′A = h′B = 0.6, respectively. To allow for a fair comparison, we chose

thresholds that result in comparable false positive rates for both scores. As the proportion of causal signal

θcausal increases (and the extent of confounding γ2 lessens in turn), the power of both edge orienting scores

increases. As the signal to noise ratio passes the 1:1 threshold (θcausal = 0.50 causal signal), the power of

the scores goes to 70% and then 80%, with the orthomarker scores showing slightly better performance (in

Figure 1c). Since the LEO.NB.OCA score includes the genetic information present in the orthogonal causal

anchor set MB , it is not surprising that it tends to have higher power than the LEO.NB.CPA score in this

example.

The LEO.NB.OCA(A ← B) score is expected to be inferior to the LEO.NB.CPA(A ← B) score if trait

A is not associated with a SNP since then the OCA score may erroneously anchor trait A to one or more

noise SNPs. To illustrate this, we simulated the fully causal simulation models as described above but did

not anchor A to a genetic marker, i.e. h′A = 0. At a LEO.NB.OCA threshold of 0.3, we found that the
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LEO.NB.OCA score has a mean false positive rate of 0.0031 (Standard Error SE = 0.0006) and a mean

power of 0.93 (SE = 0.008). At this threshold, the LEO.NB.CPA has a smaller false positive rate of 0.0018

(SE = 0.0003) and a higher power 0.95 (SE = 0.006). We should point out that at the recommended

threshold of 0.8 for the CPA score, the this score would have a smaller false positive rate but also a lower

power.

Simulations to evaluate automatic SNP selection methods

NEO software implements several options for automatically selecting SNPs: a greedy approach, a

forward-stepwise approach or both. Here we evaluate the performance of these selection methods and their

robustness with respect to noise SNPs. We use the single edge simulation model (Figure 1a). For the two

traits A and B, we simulated an observed correlation of cor(A,B) = ρA,B = 0.3, and restricted

heritabilities h′A = h′B = 0.4. We simulated a fully causal model (θcausal = 1.0) and N = 200 observations.

In this simulation, we include neighboring noise SNPs that are correlated (in high linkage disequilibrium)

with the primary signal SNPs, albeit with a weaker trait correlation. Each of these neighboring SNPs had

a correlation sampled uniformly from [0.4, 0.7] with their respective primary causal SNPs.

Figures 2(a,b) correspond to the situation where each trait is anchored to one true signal SNP. Figures

2(c,d) involve traits related to four true SNPs. We find that both LEO.NB scores peak at the true number

of signal SNPs. The LEO.NB.OCA scores pass the recommended threshold of 0.3 even when only a single

signal SNP is used. As expected, the scores increase as additional signal SNPs are added. It is reassuring

that the scores are quite robust with respect to extraneous noise SNPs.

When comparing the results of the three automatic SNP selection approaches, we find that the LEO.NB

scores are mildly susceptible to the decoy effect of neighboring (high LD) noise SNPs if only greedy SNP

selection is used to define the preliminary sets M ′
A (Step 2). Fortunately, this effect is ameliorated by the

combined use of greedy and forward-step automatic SNP selection procedures. Since neighboring SNPs are

increasingly common as whole genome SNP data become available, our simulation study shows that a

strictly greedy approach should be supplemented by a forward-step approach to increase the power of edge

orienting.

In Figures 2(e,f) we show the null distribution of the scores under the scenario of 0% causal signal. These

figures extend the results of Table 1 by varying the number of SNPs that are used in the computation of

the LEO.NB scores. When the correlation between A and B is due to a shared yet unobserved or hidden

causal parent C (MA → A ← C → B ← MB) rather than true A → B or B → A causal flow, the

7



LEO.NB.OCA score – which includes a confounded model in the denominator – stays substantially below

its recommnended threshold of 0.3. This study highlights an advantage of the proposed LEO.NB.OCA

score: it is conservative and robust irrespective of the automatic marker selection method.

Discussion

Our simulation studies show that orthogonal causal anchors lead to powerful edge scores that may

outperform scores based only on common pleiotropic anchors (Figure 1).

NEO provides multiple options for automatically anchoring a trait to genetic markers: greedy, forward, and

combined (greedy and forward) SNP marker selection. While our simulation studies suggest that these

three SNP marker selection methods have similar performance, we find that the combined SNP marker

selection performs best when signal SNPs are in high linkage disequilibrium with noise SNPs. We find that

the proposed edge scores (LEO.NB.OCA, LEO.NB.CPA) are quite robust with respect to adding

extraneous noise SNPs.

Our simulations do not evaluate NEO by considering all steps jointly (how to best construct the undirected

network, how to best identify marker/QTL sets for each expression trait, followed by edge orientation).

Instead, the simulations evaluate the power and false positive rate given the described marker assignment.

Errors in the specifications of the edges or the causal anchor assignment will greatly inflate the reported

false positive rates. Although presented for interest and as a starting point for further exploration, the

automated SNP selection methodology is not yet amenable to evaluation by theoretical or permutation

based methods, the latter conclusion due to the practical limitations on computation time. Hence we

recommend the manual QTL curation come before further analysis. The establishment of genome-wide

significance levels for QTLs has been addressed by much theoretical work and we recommend this theory,

or a permutation analysis (such as provided by the R/QTL package), be employed before running NEO

and comparing the possible causal model explanations.

References
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Simulation proportion edge LEO.NB score threshold Power at False positive
model causal θcausal score Mean (SE) RT (SE) rate at RT (SE)

1a.1b.0 0.0 LEO.NB.OCA -4.75 (0.12) 0.3 0.0041 (0.00078)
1a.1b.50 0.5 LEO.NB.OCA -0.51 (0.09) 0.3 0.29 (0.020)
1a.1b.100 1.0 LEO.NB.OCA 2.03 (0.08) 0.3 0.90 (0.0099)
1a.1b.100.4an.4bn 1.0 LEO.NB.OCA 2.11 (0.07) 0.3 0.94 (0.0069)

1a.1b.0 0.0 LEO.NB.CPA -3.09 (0.11) 0.3 0.027 (0.0040)
1a.1b.50 0.5 LEO.NB.CPA -0.19 (0.1) 0.3 0.38 (0.023)
1a.1b.100 1.0 LEO.NB.CPA 1.48 (0.07) 0.3 0.83 (0.015)
1a.1b.100.4an.4bn 1.0 LEO.NB.CPA 1.50 (0.06) 0.3 0.86 (0.013)

Table 1: Statistical power and false positive rates for different single edge simulation models
(Figure 1a). We report the false positive rate and power for the LEO.NB.OCA and LEO.NB.CPA scores at
the recommended threshold of 0.3. We considered 4 different causal scenarios for the edge B → A. Simulation
model ‘1a.1b.0’ involved one signal SNP into A, one signal SNP into B and a completely confounded A-B
correlation. This completely confounded null model corresponds to having independent SNPs associated with
both A and B nodes. Simulation model ‘1a.1b.100’ used an A-B association that was 100% causal. Simulation
‘1a.1b.100.4an.4bn’ used an A-B association that was 100% causal, but it involved four neighboring noise
SNPs into A and four into B. Neighboring SNPs had correlation with the primary signal SNPs sampled from
[0.4, 0.7]. In each simulation 100 background noise SNPs were included. Results from 300 simulated data
sets are shown, with sample size N = 200 in each simulation. Restricted heritabilities (Eq. 4) were set to
h′A = h′B = 0.4 and the observed correlation cor(A,B) was set to 0.3. The 5% false positive threshold is the
mean score (under the null hypothesis of completely confounded association; γ2 = 0.3) plus 1.644 standard
deviations. The recommended threshold of 0.3 for LEO.NB.OCA is substantially more conservative than the
5% false positive rate. At a threshold of 0.3, we obtain a false positive rate of 0.027 for the CPA score which
is much higher than that of the LEO.NB.OCA method (0.0041). As aside, we mention that we recommend
a threshold of 0.8 for the CPA score. The power of the CPA score under the fully causal model, while at
an acceptable 83-86%, is slightly lower than that of the LEO.NB.OCA score: 90-94% for the same data. To
compare the LEO.NB.CPA and the LEO.NB.OCA at the same false positive rate, a LEO.NB.CPA threshold
of 1.552 would be needed to obtain the false positive rate of 0.0041 (± 0.00078 SE). At this threshold
LEO.NB.CPA would yield only 48% (± 2.3% SE) power on the 100% causal simulations.
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Figure 1: Single edge simulation studies involving the LEO.NB.CPA score (Eq. 2) and the
LEO.NB.OCA score (Eq. 3). (a) outlines the parameters used in the single edge A ← B simulation
model. A hidden confounder C affects the correlation between A and B. The strength of confounding is
determined by the path coefficient γ. The path coefficient ω parameterizes the true causal effect of B on
A. The proportion of causal signal is defined as θcausal = |ω/cor(A,B)| (Eq. 6). The effect of SNP markers
on traits A and B is parameterized with the restricted heritabilities h′A and h′B , respectively (Eq. 4). The
variance in A and B due to noise is denoted by εA and εB . Figures (b) and (c) report the power of
the LEO.NB.OCA score (pink bars) and the LEO.NB.CPA score (green bars) to retrieve the causal signal
A ← B. We used a single causal anchor M

(1)
A and M

(1)
B for traits A and B respectively. In this case, the

LEO.NB.CPA score (Eq. 2) reduces to the single marker LEO.NB score (Eq. 1). The models of Figures (b)
and (c) have restricted heritabilities h′A = h′B = 0.2 and h′A = h′B = 0.6, respectively. The simulations used
a fixed sample size N = 200 and correlation cor(A,B) = 0.4. When there is no causal signal (θcausal = 0, left
most bars), the statistical power equals the false positive rate. In this case, the LEO.NB.OCA threshold of
0.3 leads to a false positive rate < 0.05. To ensure a fair comparison, we chose a threshold for LEO.NB.CPA
that results in a comparable false positive rate. The LEO.NB.OCA score tends to have higher power than
the LEO.NB.CPA score.
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Figure 2: Simulation study for evaluating the robustness of LEO.NB scores with respect to the
addition of extraneous noise SNPs. Figures (a-f) show the dependence of the LEO.NB scores (y-axis) on
the number of added SNPs (x-axis). Figures (a,c,e, first column) and (b,d,f) correspond to the LEO.NB.OCA
and LEO.NB.CPA scores, respectively. Figures (a,b, first row) and (c,d) correspond to models with 1 and 4
true signal SNPs, respectively. Note that the LEO.NB scores peak close to the true number of signal SNPs
even in the presence of noise SNPs. Figures (a,c) show that the LEO.NB.OCA score is robust to the addition
of extraneous noise SNPs, as the score stays above the recommended 0.3 threshold (dashed horizontal line).
Figures (e,f) correspond to a model with no causal signal (MA → A ← C → B ← MB). The LEO.NB.OCA
score remains below 0.3. 11


